0 | module Data.Bool.Decidable
5 | data Reflects : Type -> Bool -> Type where
6 | RTrue : p -> Reflects p True
7 | RFalse : Not p -> Reflects p False
10 | recompute : Dec a -> (0 x : a) -> a
11 | recompute (Yes x) _ = x
12 | recompute (No contra) x = absurdity $
contra x
15 | invert : {0 b : Bool} -> {0 p : Type} -> Reflects p b -> if b then p else Not p
16 | invert {b = True} (RTrue x ) = x
17 | invert {b = False} (RFalse nx) = nx
20 | remember : {b : Bool} -> {0 p : Type} -> (if b then p else Not p) -> Reflects p b
21 | remember {b = True } = RTrue
22 | remember {b = False} = RFalse
25 | reflect : {c : Bool} -> Reflects p b -> (if c then p else Not p) -> b = c
26 | reflect {c = True } (RTrue x) _ = Refl
27 | reflect {c = True } (RFalse nx) x = absurd $
nx x
28 | reflect {c = False} (RTrue x) nx = absurd $
nx x
29 | reflect {c = False} (RFalse nx) _ = Refl