0 | module Data.SnocList.Elem
2 | import Data.Singleton
4 | import Decidable.Equality
5 | import Control.Function
9 | data Elem : a -> SnocList a -> Type where
11 | Here : Elem x (sx :< x)
13 | There : {0 x, y : a} -> Elem x sx -> Elem x (sx :< y)
16 | Uninhabited (Here {x} {sx} = There {x = x'} {y} {sx = sx'} e) where
17 | uninhabited Refl
impossible
20 | Uninhabited (There {x} {y} {sx} e = Here {x = x'} {sx = sx'}) where
21 | uninhabited Refl
impossible
24 | Injective (There {x} {y} {sx}) where
25 | injective Refl = Refl
28 | DecEq (Elem x sx) where
29 | decEq Here Here = Yes Refl
30 | decEq (There this) (There that) = decEqCong $
decEq this that
31 | decEq Here (There later) = No absurd
32 | decEq (There later) Here = No absurd
35 | Uninhabited (Elem {a} x [<]) where
36 | uninhabited Here
impossible
37 | uninhabited (There p
) impossible
41 | neitherHereNorThere : Not (x = y) -> Not (Elem x sx) -> Not (Elem x (sx :< y))
42 | neitherHereNorThere xny _ Here = xny Refl
43 | neitherHereNorThere _ xnxs (There xxs) = xnxs xxs
47 | isElem : DecEq a => (x : a) -> (sx : SnocList a) -> Dec (Elem x sx)
48 | isElem x [<] = No absurd
49 | isElem x (sx :< y) with (decEq x y)
50 | isElem x (sx :< x) | Yes Refl = Yes Here
51 | isElem x (sx :< y) | No xny with (isElem x sx)
52 | isElem x (sx :< y) | No xny | Yes xsx = Yes (There xsx)
53 | isElem x (sx :< y) | No xny | No xnsx = No (neitherHereNorThere xny xnsx)
57 | get : (sx : SnocList a) -> (p : Elem x sx) -> a
58 | get (_ :< x) Here = x
59 | get (sx :< _) (There p) = get sx p
63 | lookup : (sx : SnocList a) -> (p : Elem x sx) -> Singleton x
64 | lookup (_ :< x) Here = Val x
65 | lookup (sx :< _) (There p) = lookup sx p
69 | dropElem : (sx : SnocList a) -> (p : Elem x sx) -> SnocList a
70 | dropElem (sy :< _) Here = sy
71 | dropElem (sy :< y) (There p) = (dropElem sy p) :< y
75 | elemToNat : Elem x sx -> Nat
77 | elemToNat (There p) = S (elemToNat p)
81 | indexElem : Nat -> (sx : SnocList a) -> Maybe (
x ** Elem x sx)
82 | indexElem _ [<] = Nothing
83 | indexElem Z (_ :< y) = Just (
y ** Here)
84 | indexElem (S k) (sy :< _) = (\(
y ** p)
=> (
y ** There p)
) `map` (indexElem k sy)
88 | elemMap : (0 f : a -> b) -> Elem x sx -> Elem (f x) (map f sx)
89 | elemMap f Here = Here
90 | elemMap f (There el) = There $
elemMap f el