
Type Driven Development in Idris

Edwin Brady (ecb10@st-andrews.ac.uk)
University of St Andrews, Scotland, UK

@edwinbrady

Strange Loop, St. Louis, 24th September 2015

ecb10@st-andrews.ac.uk
@edwinbrady


Scotland



Idris is a Pac-man Complete functional programming language
with dependent types

cabal update; cabal install idris

http://idris-lang.org/download

http://idris-lang.org/STL2015/

This workshop is in two parts:

Fundamentals: A tour of Idris

Managing side-effects and resources

http://idris-lang.org/download
http://idris-lang.org/STL2015/


Idris is a Pac-man Complete functional programming language
with dependent types

cabal update; cabal install idris

http://idris-lang.org/download

http://idris-lang.org/STL2015/

This workshop is in two parts:

Fundamentals: A tour of Idris

Managing side-effects and resources

http://idris-lang.org/download
http://idris-lang.org/STL2015/


Ask me things!

If . . .

There’s anything you don’t understand

Anything you want me to explain better

Any exercises you’d like help with

. . . please don’t hesitate to ask!

Either during the workshop. . .

. . . or come and find me throughout the conference

. . . or email me afterwards at edwin.brady@gmail.com

edwin.brady@gmail.com


Why types?

We can use type systems for:

Checking a program has the intended properties

Guiding a programmer towards a correct program

Building expressive and generic libraries

Type Driven Development puts types first. Three steps:

Type: Write a type for a function

Define: Create a (possibly incomplete) implementation

Refine: Improve/complete the implementation



Why types?

We can use type systems for:

Checking a program has the intended properties

Guiding a programmer towards a correct program

Building expressive and generic libraries

Type Driven Development puts types first. Three steps:

Type: Write a type for a function

Define: Create a (possibly incomplete) implementation

Refine: Improve/complete the implementation



First class dependent types

Functions can compute types, types can contain values

Compiled (via C, Javascript, . . . )

Optimisations: aggressive erasure, inlining, partial evaluation

Type classes, like Haskell

No deriving, yet
Functor, Applicative, Monad, do notation, idiom brackets

Strict evaluation order, unlike Haskell

Lazy as a type

Foreign functions, system interaction



First class dependent types

Functions can compute types, types can contain values

Compiled (via C, Javascript, . . . )

Optimisations: aggressive erasure, inlining, partial evaluation

Type classes, like Haskell

No deriving, yet
Functor, Applicative, Monad, do notation, idiom brackets

Strict evaluation order, unlike Haskell

Lazy as a type

Foreign functions, system interaction



First class dependent types

Functions can compute types, types can contain values

Compiled (via C, Javascript, . . . )

Optimisations: aggressive erasure, inlining, partial evaluation

Type classes, like Haskell

No deriving, yet
Functor, Applicative, Monad, do notation, idiom brackets

Strict evaluation order, unlike Haskell

Lazy as a type

Foreign functions, system interaction



First class dependent types

Functions can compute types, types can contain values

Compiled (via C, Javascript, . . . )

Optimisations: aggressive erasure, inlining, partial evaluation

Type classes, like Haskell

No deriving, yet
Functor, Applicative, Monad, do notation, idiom brackets

Strict evaluation order, unlike Haskell

Lazy as a type

Foreign functions, system interaction



First class dependent types

Functions can compute types, types can contain values

Compiled (via C, Javascript, . . . )

Optimisations: aggressive erasure, inlining, partial evaluation

Type classes, like Haskell

No deriving, yet
Functor, Applicative, Monad, do notation, idiom brackets

Strict evaluation order, unlike Haskell

Lazy as a type

Foreign functions, system interaction



Demonstration: Introductory Examples



https://www.manning.com/books/

type-driven-development-with-idris

Manning Deal of the Day,
September 24th
50% discount
Discount code: dotd092415tw

https://www.manning.com/books/type-driven-development-with-idris
https://www.manning.com/books/type-driven-development-with-idris


Demonstration: An Effectful Evaluator



Effects in Idris

Effectful programs

data EffM : (m : Type -> Type) -> (res : Type) ->

(in_effects : List EFFECT) ->

(out_effects : res -> List EFFECT) ->

Type

Composing programs

(>>=) : EffM m res es es’ ->

((x : res) -> EffM m b (es’ x) es’’) ->

EffM m b es es’’



Effects in Idris

Effectful programs

data EffM : (m : Type -> Type) -> (res : Type) ->

(in_effects : List EFFECT) ->

(out_effects : res -> List EFFECT) ->

Type

Composing programs

(>>=) : EffM m res es es’ ->

((x : res) -> EffM m b (es’ x) es’’) ->

EffM m b es es’’



Examples

get : EffM m t [STATE t] (\x : t => [STATE t])

put : t -> EffM m () [STATE t] (\x : () => [STATE t])

putM : t’ -> EffM m () [STATE t]

(\x : () => [STATE t’])



Examples

get : Eff t [STATE t]

put : t -> Eff () [STATE t]

putM : t’ -> Eff () [STATE t] [STATE t’]



Examples

Combining effects

inc : Eff () [STDIO, STATE Nat]

inc = do x <- get

putStrLn ("Old value " ++ show x)

put (x + 1)



Examples

Labelling effects

sumStates : Eff Nat [’xval ::: STATE Nat,

’yval ::: STATE Nat]

sumStates = do x <- ’xval :- get

y <- ’yval :- get

return (x + y)



Running Effectful Programs

run : Applicative m => {auto env : Env m xs} ->

(prog : EffM m a xs xs’) -> m a

runPure : {auto env : Env id xs} ->

(prog : Eff id a xs xs’) -> a



Effect Signatures

Effect : Type

Effect = (t : Type) -> (res : Type) ->

(res’ : t -> Type) -> Type

data State : Effect where

Get : State a a (const a)

Put : b -> State () a (const b)

STATE : Type -> EFFECT

STATE t = MkEff t State



Effect Signatures

Effect : Type

Effect = (t : Type) -> (res : Type) ->

(res’ : t -> Type) -> Type

data State : Effect where

Get : sig State a a

Put : b -> sig State () a b

STATE : Type -> EFFECT

STATE t = MkEff t State



Effect Signatures

data StdIO : Effect where

PutStr : String -> sig StdIO ()

GetStr : sig StdIO String

PutCh : Char -> sig StdIO ()

GetCh : sig StdIO Char

STDIO : EFFECT

STDIO = MkEff () StdIO



Effect Handlers

Handlers

class Handler (e : Effect) (m : Type -> Type) where

covering

handle : (r : res) -> (eff : e t res resk) ->

(k : ((x : t) -> resk x -> m a)) -> m a

Example Instances

instance Handler State m

instance Handler StdIO IO

instance Handler StdIO (List String ->

(a, List String))



Effect Handlers

State

instance Handler State m where

handle st Get k = k st st

handle st (Put n) k = k () n

StdIO

instance Handler StdIO IO where

handle () (PutStr s) k = do putStr s; k () ()

handle () GetStr k = do x <- getLine; k x ()

handle () (PutCh c) k = do putChar c; k () ()

handle () GetCh k = do x <- getChar; k x ()



Effect Handlers

State

instance Handler State m where

handle st Get k = k st st

handle st (Put n) k = k () n

StdIO

instance Handler StdIO IO where

handle () (PutStr s) k = do putStr s; k () ()

handle () GetStr k = do x <- getLine; k x ()

handle () (PutCh c) k = do putChar c; k () ()

handle () GetCh k = do x <- getChar; k x ()



State machine example: Door opening



Demonstration: Door Protocol and Effects



Summary

Why are we interested in dependent types?

Safety

Programs checked against precise specifications

Expressivity

Better, more descriptive APIs
Type directed development
Type system should be helping, not telling you off!

Genericity

e.g. program generation

Efficiency

More precise type information should help the compiler
Partial evaluation, erasure



https://www.manning.com/books/

type-driven-development-with-idris

Manning Deal of the Day,
September 24th
50% discount
Discount code: dotd092415tw

https://www.manning.com/books/type-driven-development-with-idris
https://www.manning.com/books/type-driven-development-with-idris

