Idris2Doc : Data.Bifoldable

# Data.Bifoldable

`Additional utility functions for the `Bifoldable` interface.`
biall : Bifoldablep => (a -> Bool) -> (b -> Bool) -> pab -> Bool
`  The disjunction of the collective results of applying a predicate to all  elements of a structure. `biall` short-circuits from left to right.`

Totality: total
biand : Bifoldablep => p Lazy Bool Lazy Bool -> Bool
`  The conjunction of all elements of a structure containing lazy boolean  values. `biand` short-circuits from left to right, evaluating until either an  element is `False` or no elements remain.`

Totality: total
biany : Bifoldablep => (a -> Bool) -> (b -> Bool) -> pab -> Bool
`  The disjunction of the collective results of applying a predicate to all  elements of a structure. `biany` short-circuits from left to right.`

Totality: total
bichoice : (Bifoldablep, Alternativef) => p Lazy (fa) Lazy (fa) -> fa
`  Bifold using Alternative.    If you have a left-biased alternative operator `<|>`, then `choice` performs  left-biased choice from a list of alternatives, which means that it  evaluates to the left-most non-`empty` alternative.`

Totality: total
bichoiceMap : (Bifoldablep, Alternativef) => (a -> fx) -> (b -> fx) -> pab -> fx
`  A fused version of `bichoice` and `bimap`.`

Totality: total
biconcat : (Bifoldablep, Monoidm) => pmm -> m
`  Combines the elements of a structure using a monoid.`

Totality: total
biconcatMap : (Bifoldablep, Monoidm) => (a -> m) -> (b -> m) -> pab -> m
`  Combines the elements of a structure,  given ways of mapping them to a common monoid.`

Totality: total
bifoldMap : (Bifoldablep, Monoidm) => (a -> m) -> (b -> m) -> pab -> m
`  Combines the elements of a structure,  given ways of mapping them to a common monoid.`

Totality: total
bifoldlM : (Bifoldablep, Monadm) => (a -> b -> ma) -> (a -> c -> ma) -> a -> pbc -> ma
`  Left associative monadic bifold over a structure.`

Totality: total
bifor_ : (Bifoldablep, Applicativef) => pab -> (a -> fx) -> (b -> fy) -> f ()
`  Like `bitraverse_` but with the arguments flipped.`

Totality: total
bior : Bifoldablep => p Lazy Bool Lazy Bool -> Bool
`  The disjunction of all elements of a structure containing lazy boolean  values. `bior` short-circuits from left to right, evaluating either until an  element is `True` or no elements remain.`

Totality: total
biproduct : (Bifoldablep, Numa) => paa -> a
`  Multiply together all elements of a structure.`

Totality: total
biproduct' : (Bifoldablep, Numa) => paa -> a
`  Multiply together all elements of a structure.  Same as `product` but tail recursive.`

Totality: total
bisequence_ : (Bifoldablep, Applicativef) => p (fa) (fb) -> f ()
`  Evaluate each computation in a structure and discard the results.`

Totality: total
bisum : (Bifoldablep, Numa) => paa -> a
`  Add together all the elements of a structure.`

Totality: total
bisum' : (Bifoldablep, Numa) => paa -> a
`  Add together all the elements of a structure.  Same as `bisum` but tail recursive.`

Totality: total
bitraverse_ : (Bifoldablep, Applicativef) => (a -> fx) -> (b -> fy) -> pab -> f ()
`  Map each element of a structure to a computation, evaluate those  computations and discard the results.`

Totality: total