Idris2Doc : Data.Stream

# Data.Stream

cantor : Stream (Streama) -> Streama
Totality: total
cycle : (xs : Lista) -> {auto 0 _ : NonEmptyxs} -> Streama
`  Produce a Stream repeating a sequence  @ xs the sequence to repeat  @ ok proof that the list is non-empty`

Totality: total
diag : Stream (Streama) -> Streama
`  Return the diagonal elements of a stream of streams`

Totality: total
drop : Nat -> Streama -> Streama
`  Drop the first n elements from the stream  @ n how many elements to drop`

Totality: total
index : Nat -> Streama -> a
`  Get the nth element of a stream`

Totality: total
iterate : (a -> a) -> a -> Streama
`  Generate an infinite stream by repeatedly applying a function  @ f the function to iterate  @ x the initial value that will be the head of the stream`

Totality: total
nats : StreamNat
`  All of the natural numbers, in order`

Totality: total
repeat : a -> Streama
`  An infinite stream of repetitions of the same thing`

Totality: total
scanl : (a -> b -> a) -> a -> Streamb -> Streama
`  Produce a Stream of left folds of prefixes of the given Stream  @ f the combining function  @ acc the initial value  @ xs the Stream to process`

Totality: total
unfoldr : (b -> (a, b)) -> b -> Streama
Totality: total
zag : List1a -> List1 (Streama) -> Stream (Streama) -> Streama
Totality: total
zig : List1 (Streama) -> Stream (Streama) -> Streama
Totality: total
zipWith3IndexLinear : (0 f : (a -> a -> a -> a)) -> (xs : Streama) -> (ys : Streama) -> (zs : Streama) -> (i : Nat) -> indexi (zipWith3fxsyszs) = f (indexixs) (indexiys) (indexizs)
Totality: total
zipWithIndexLinear : (0 f : (a -> a -> a)) -> (xs : Streama) -> (ys : Streama) -> (i : Nat) -> indexi (zipWithfxsys) = f (indexixs) (indexiys)
Totality: total