Idris2Doc : Data.Enumerate.Indexed

Data.Enumerate.Indexed(source)

The content of this module is based on the paper
A Completely Unique Account of Enumeration
by Cas van der Rest, and Wouter Swierstra
https://doi.org/10.1145/3547636

Definitions

recordIEnumerator : (i->Type) ->Type->Type
  An (a,b)-enumerator is an enumerator for values of type b provided
that we already know how to enumerate subterms of type a

Totality: total
Visibility: export
Constructor: 
MkIEnumerator : (((v : i) ->List (av)) ->Listb) ->IEnumeratorab

Projection: 
.runIEnumerator : IEnumeratorab-> ((v : i) ->List (av)) ->Listb

Hints:
Alternative (IEnumeratora)
Applicative (IEnumeratora)
Functor (IEnumeratora)
Monad (IEnumeratora)
rec : (v : i) ->IEnumeratora (av)
Totality: total
Visibility: export
pairWith : (b->c->d) ->IEnumeratorab->IEnumeratorac->IEnumeratorad
Totality: total
Visibility: export
pair : IEnumeratorab->IEnumeratorac->IEnumeratora (b, c)
Totality: total
Visibility: export
sig : {b : a->Type} ->IEnumeratorfa-> ((x : a) ->IEnumeratorf (bx)) ->IEnumeratorf (x : a**bx)
Totality: total
Visibility: export
const : Listb->IEnumeratorab
Totality: total
Visibility: export
isized : ((v : i) ->IEnumeratora (av)) ->Nat-> (v : i) ->List (av)
Totality: total
Visibility: export
indexed : (d : (i->IDescListi)) -> (v : i) ->IEnumerator (Fixd) (Fixdv)
Totality: total
Visibility: export
0Memorator : (d : Descp) -> (Fixd->Type) ->Type->Type
Totality: total
Visibility: export
memorate : ((x : Fixd) ->Memoratordb (bx)) ->Nat-> (x : Fixd) ->List (bx)
Totality: total
Visibility: export